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INTRODUCTION

Worldwide over 6 million new cancer cases and close to 4 million 
cancer related deaths are reported every year [1,2]. The most prominent 

female-specific cancers are those of the breast, cervix, endometrium, 
and ovary [1,3]. Breast cancer is the most common and represents 
¼th of cancers in women [4], whereas cancer of the endometrium and 
ovary account for 5% and 4% respectively [5,6]. Cervical cancer ranks 

ABSTRACT

Aim and Objectives: In this report, we assessed the accuracy of our previously developed method for simultaneous diagnosis 
of the four female cancers of the Breast, Endometrium, Cervix, and Ovary, in a clinical set-up with blinded protocol.

Materials and Methods: Our test protocol combined global serum metabolome profiling wherein data was analyzed with 
machine learning algorithms to extract metabolite signatures that correlated with early-stage cancers. High-resolution mass 
spectrometry was employed to profile the serum metabolome and the resulting data were subjected to a pre-processing 
pipeline to obtain the data set. The data was then analyzed using artificial intelligence algorithms to identify early-stage cancer 
metabolic signatures.

Results: Overall, a total of 1000 blinded samples were analyzed by generating the serum metabolome profiles, followed 
by sequential algorithms for cancer detection and multiclass cancer type identification. Of these 1000 samples, 797 were 
identified as cancer positive, while, 203 samples were identified as cancer-negative. The multiclass algorithm was then applied 
to the 797 cancer-positive samples, to distinguish between samples that were from patients with either endometrial, breast, 
cervical, or ovarian cancer. After completion of the analysis, the sample code was broken to estimate the accuracy of the 
results. Concerning the identification of samples that were cancer-positive, the sensitivity obtained was 99.6% whereas the 
specificity was 100%. For the second stage of analysis which involves ‘tissue of origin’, all 107 breast cancer samples were 
correctly identified without any false calls. The accuracy for identification of cervical and ovarian cancers was between 95%-
96% for each, whereas 91% for endometrial cancer.

Conclusions: Our present study validates the performance of our method for the early-stage detection of female-specific 
cancers in a clinical setting. Importantly, the algorithms for cancer detection and ‘tissue of origin’ prediction, which were 
initially trained using samples from Caucasian patients, retained the accuracy on samples from Indian women patients. This 
suggests that the performance of these algorithms was minimally influenced by variables such as ethnicity and race. Present 
results, therefore, also underscore the potential clinical utility of our method for early-stage diagnosis of cancers that are 
specific to females.
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fourth with an estimated 500,000 cases globally [7].

These cancers are often detected at their more advanced stages of 
progression. Consequently, prognosis is usually poor [2,8,9]. While 
treatment outcomes are significantly improved when the cancer is 
detected at an early stage [10], effective screening paradigms for early-
stage female-specific cancers are either not currently available or suffer 
from inherent limitations that restrict their scope [11,12]. For example, 
while mammography is the recommended method for breast cancer 
screening, it is not a perfect test because its overall sensitivity ranges 
only from 75% to 85% [13]. The sensitivity further decreases sharply 
in the case of dense breast parenchyma [14]. The net consequence of 
these limitations is that many women with breast cancer are missed 
[14]. Another downside to mammography is its relatively high false-
positivity rate, which is further enhanced in women below the age 
of 40 years. As a result, the likelihood that a woman will receive at 
least 1 false-positive call after 10 yearly mammograms is found to be as 
high as 61% [15]. It follows, therefore, that an improved breast cancer 
screening method with high sensitivity and specificity across all age 
groups of women is clearly needed to minimize the harm to benefit 
ratio and, thereby, obtain better outcomes. Efforts to achieve this are 
presently ongoing [16].

Current guidelines recommend three primary screening options for 
cervical cancer. These are cytological testing alone, standalone high-
risk Human Papilloma Virus (hrHPV) testing, and co-testing with the 
combination of cytological and hrHPV testing [17]. While cytological 
testing is more widely accepted as the primary screening method for 
cervical cancer [18], it suffers from poor sensitivity (47%-70%) although 
the specificity is high [19]. In contrast, hrHPV standalone testing yields 
higher sensitivity (80%), but with a higher false positivity rate of about 
15% [20,21]. While sensitivity can be improved upon co-testing with 
both methods this, however, was shown to occur at the cost of lower 
specificities [20]. In contrast to at least some screening methods being 
available for breast and cervical cancer, no such routine or standard 
screening test is currently available for either endometrial or ovarian 
cancer. Indeed, most ovarian cancer patients do not experience 
symptoms until its later stages. The only recourse currently available 
is to either measure levels of the relatively non-specific tumor marker 
CA 125 in the blood, or to perform a pelvic ultrasound. However, 
because of poor sensitivity especially for early-stage cancer, and a high 
false-positivity rate, neither of these tests currently qualify as standalone 
screening tests for ovarian cancer [22,23]. These collective results clearly 
highlight the need for developing more accurate and reliable methods 
for screening of each of these cancers. The ideal solution here would be 
a non-invasive test that would enable more effective surveillance of at 
least the more vulnerable segments of the female population.

In an earlier report we had described the development of a method 
for the concomitant early-stage detection of these female-specific 
cancers with very high accuracy. Our protocol combined untargeted 
metabolomics with machine learning based data analysis to extract 
metabolite patterns that define the early-stage cancers [24]. The 
accuracy of detection obtained across all four cancers was 98% while 
a subsequent analysis also helped to identify the cancer type of the 
individual cancer-positive samples with reasonable accuracy. For the 
development of this test, we had employed stored serum samples that 
were obtained from biobanks. To evaluate its potential for clinical use, 
however, it was important for us to ascertain its performance with 
samples that were directly obtained from women patients in a clinical 
setting. The present report describes our efforts in this direction. 
Results obtained establish that the fidelity of both cancer detection 
and prediction of the Tissue of Origin (TOO) remained exceptionally 

high upon analysis of serum samples collected directly from women 
volunteers. Importantly, we were also able to obtain beta-validation 
of our method by confirming its accuracy in a blinded study protocol.

MATERIALS AND METHODS

Study design and sample collection 

Blood, from both cancer patients and normal female volunteers, 
were collected at the Panimalar Medical College Hospital and 
Research Institute after first obtaining approval from the Panimalar 
Medical College Hospital & Research institute, Institutional Human 
Ethics Committee (Protocol No. PMCHRI-IHEC-034). Serum was 
subsequently prepared, and the samples were anonymized before 
submitting to the analytical team (AG, GS, ZS, KVSR, NS) for analysis.

Sample accessioning

Unique identity number (identifier) issued to each sample post arrival 
to lab. These identifiers were used for queries related to sample 
handling, tasks, and results. Samples were stored frozen (-80°C) until 
required.

Metabolite extraction

Extraction of metabolite was done as earlier reported by Gupta et al., 
[24]. Briefly, serum samples were thawed at 4°C on ice. 10 µl of each 
sample was taken and metabolites were extracted and processed for 
UHPLC-MS/MS as previously described [24].

Liquid chromatography coupled with high resolution 
mass spectroscopy.

The detailed method of untargeted metabolomics was previously 
reported by Gupta et.al [24]. Briefly, a Dionex LC system was employed 
for the high-resolution separation of serum metabolite in normal and 
cancer patients.

10 µl of each sample was resolved by UHPLC prior to MS/MS analysis 
as previously described [24].

Data processing

Data generated by mass spectrometers was pre-processed through 
the steps of mass error correction, ion filtering, and normalisation as 
described earlier by Gupta et.al [24].

AI modeling of the data:

Detailed explanation of the method was shown by Gupta et al., [24]. 
Briefly, a layered approach was used, where we first distinguish cancer 
from normal and then between each of the cancers. The scheme 
employed for training, testing and validation along with method used 
for determining sensitivity and specificity was as previously described 
[24].

RESULTS

Study rationale and the samples employed 

In our previous study we had developed a method, by integrating 
untargeted serum metabolomics by mass spectrometry and analysis 
of the resulting data with a machine learning algorithm to diagnose 
Stage 0/I of female cancers with high fidelity [24]. These were breast, 
endometrial, cervical and ovarian cancers. Our protocol involved 
a sequential approach in which the cancer-positive samples were 
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each were from patients with endometrial, cervical, or ovarian cancer, 
where the remaining 87 samples were from breast cancer patients. In 
addition, we also included 200 samples from normal volunteers. The 
distribution across age groups, BMI status, and cancer stages are given 
in Table 1. 

Metabolites were extracted from each of the samples and then analyzed 
as previously described [24]. Range of the unique metabolite numbers 
detected in normal control samples and the individual cancers, across 
the individual age groups, are depicted in Figure 1. The data was 
subsequently processed our previously described in-house pipeline to 
eventually extract the matrix consisting of 2764 features [24].

The PLSDA plot generated using the matrix is shown in Figure 2. It is 
evident from this figure that the cancer samples could be unambiguously 
separated from the normal controls. To differentiate the cancer samples 
from normal controls, we applied our previously developed AI model 
[24] on the present data as the test set. As described in our earlier report 
[24], the model applies a logistic regression function to separate the 
female-specific cancer samples from the control group. After training 
the algorithm calculates a score for the individual samples by using the 
following formula:

1 2 3 2764_ 0 1* 2* 3* ..... 2764*y score x x I x I x I x I= + + + + +  

Here, x0 is a constant number, Ii (1<=i<=2764) is the intensity of 
metabolite present in the respective sample.

The schematic of the approach employed is illustrated in Figure 3 and 
Figure 4A shows the results obtained after applying the model on the 
test set [24]. The scatter diagram gives the scores generated by the model 
for control and the cancer cases. It is evident from the figure that the 
scores for the normal control samples are clearly distinguished from 
those for the cancer set. A cut-off score of 5 successfully differentiated 
the two sets as depicted in Figure 4B. Sensitivity, Specificity, and 
Accuracy all corresponded to 100%.

first distinguished from the non-cancer samples. Subsequent to this, 
multi-class algorithm was employed to differentiate between each of 
the separate cancers of the cancer-positive subset. The high accuracy 
obtained in this study suggested the possibility that this approach 
could indeed be further developed as a screening tool for the early-
stage female-specific cancers.

Although our results were extremely promising, we recognized that our 
analysis algorithms had been developed using serum samples obtained 
from commercial biobanks [24]. Therefore, to further explore its 
utility, it was necessary to evaluate the performance of our test under 
more relevant conditions where samples were directly obtained from 
patients in a clinical setting [25-27]. Another important point here was 
that, for the algorithm development, we had employed metabolome 
profiles of sera that had been primarily derived from Caucasian 
patients. Therefore, since the metabolome composition is known 
to vary across different populations [28,29], it was also relevant to 
establish whether these algorithms were equally effective when samples 
obtained from Indian women patients were tested. This question was 
especially pertinent given that our objective was to identify metabolite 
signatures that specifically characterized the disease state of interest, 
independent of other variables such as age, ethnicity, race, etc. We, 
therefore, undertook the present exercise to ascertain the accuracy of 
our method [24] when tested on samples directly obtained from Indian 
women patients. 

Verification of algorithm performance for identification of 
Indian women patients

Our first objective was to test the performance accuracy of our earlier 
developed algorithms, which were developed using data largely 
generated from Caucasian samples, in Indian patients. For this we 
used a set of 300 samples collected at the Panimalar Medical College 
Hospital and Research Institute (PMCHRI). Of these, 71 samples 

Table 1: Demographic, BMI, and Cancer-stage grouping of the samples employed for algorithm verification.

Sample clinical info

Clinical status

Parameter Intervals
Normal control 

(n=200)
Endometrial cancer 

(n=71)
Breast cancer 

(n=87)
Cervical cancer 

(n=71)
Ovarian cancer 

(n=71)

Age (years) 20-30 102 0 8 1 5

31-40 51 2 26 5 17

41-50 29 17 19 7 27

51-60 14 35 28 24 16

61-70 4 13 3 20 5

71-80 0 4 3 13 0

81-90 0 0 0 1 1

BMI (Kg/m2) 10 to 30 154 57 68 57 56

>30 24 14 19 12 15

Cancer stage 1 26 32 29 21

2 38 46 34 32

3 4 3 3 11

4 3 6 5 7
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Figure 1: Age-wise detection of detected metabolites. Figure provides a graphical representation of the number of metabolites detected across the 
individual age groups, for the normal control set as well as the individual cancer groups. The cumulative unique metabolites detected in normal control 
samples were 5371. While, endometrial, breast, cervical and ovarian cancer samples were found to have 4947, 5132, 5035 and 5041 respectively.

Figure 2: PLSDA plot distinguishes between the cancer group and also the normal controls. Figure presents a PLSDA plot of the matrix of sample-
specific metabolites versus metabolite intensity for normal controls and the group of women-specific cancer samples. The separation obtained between 
them is shown. The R2 value obtained is included. Note: ( ): Cancer, ( ): Normal
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Figure 3: Schematic of the approach employed for identifying women-specific cancer positive samples in the Indian test dataset. Illustrated here is 
the procedure adopted for identifying the cancer-positive samples in the Indian Test dataset. The grey box represents the previously trained model 
for cancer detection and tissue type identification [24]. The Test dataset was first processed using the data processing steps followed previously in the 
study [24]. The final processed data was tested first for the identification of cancer samples in the dataset, the cancer positive identified cases were 
next further tested using the one versus rest models trained previously for cancer tissue type prediction [24]. Note: ( ): Normal controls, ( ) :Breast, 
( ) :Endometrial, ( ) :Cervical, ( ) : Ovarian.

 

Figure 4: Distinguishing women-specific cancers from normal controls. Results obtained for testing of our previous trained model for distinguishing 
the women-specific cancer group from normal on the data set generated from Indian patient and normal controls is shown here [24]. The separation 
achieved between the cancer and normal control groups is shown in Panel A and the resulting confusion matrix that was generated is shown in Panel 
B. Values obtained for Sensitivity, Specificity, and Accuracy are also given.
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plotted. In Figure 5A, we plotted the score obtained for Endometrial 
cancer samples against that of the group comprising of the Breast, 
Cervical and Ovarian (BCO) cancers. A clear distinction between 
Endometrial and BCO Cancer samples is seen (Figure 5A). Control 
samples were also included in this analysis and sensitivity, specificity 
and accuracy obtained were 97%, 94%, and 95% respectively.

Next, we plotted the Breast cancer sample scores versus those of the 
group comprised of Endometrial, Cervical and Ovarian (ECO) 
cancer samples (Figure 5B). Here again Breast Cancer could be clearly 
distinguished from ECO cancer sample set as shown (Figure 5B). The 
sensitivity, specificity and accuracy obtained were 94%, 93.8%, and 
93.9% respectively.

Figure 5C depicts the confusion matrix obtained for an analysis of 
cervical cancer sample scores versus that for the group of Endometrial, 
Breast and Ovarian (EBO) cancer samples. Sensitivity, specificity and 
accuracy obtained were 92%, 97%, and 96% respectively. And, finally, 
Figure 5D shows the confusion matrix obtained for discriminating 
ovarian cancer samples from the group comprising of Endometrial, 
Breast and Cervical (EBC) Cancer samples. Here, the calculated the 
sensitivity, specificity and accuracy were 98.5%, 97.7%, and 97.6% 
respectively.

Differentiating between breast, endometrial, cervical and 
ovarian cancer samples

Next, to distinguish the specific cancer types among the positive 
samples identified in Figure 4, we layered the multiclass AI model 
over the model described in this figure. The multiclass AI model was 
also developed in our earlier study [24]. It is a One Versus Rest (OVR) 
classifier model, which gives four scores for each sample. Each of these 
scores define the likelihood of a given sample belonging to anyone of 
the four classes. As previously described [24], the formulae used by 
the algorithm to calculate the four scores for each of the sample is as 
follows:

1 2 3 2764

1 2 3 2764

1 2 3 2764

1 2 3 2764

_ 1 0 1* 2* 3* ..... 2764*
_ 2 0 1* 2* 3* ..... 2764*
_ 3 0 1* 2* 3* ..... 2764*
_ 4 0 1* 2* 3* ..... 2764*

y score y y I y I y I y I
y score z z I z I z I z I
y score a a I a I a I a I
y score b y I b I b I b I

= + + + + +
= + + + + +
= + + + + +
= + + + + +  

y0, z0, a0, b0 represent constant numbers, Ii (1<=i<=2764) is the 
relative concentration of metabolite i in the respective sample.

To assess the performance of our multiclass model in terms of 
differentiating between the individual cancer types for Indian patients, 
as also from normal controls, the scores obtained from the model were 

Figure 5: Testing the multiclass model for its ability to distinguish the individual cancer groups. Panel (A) shows the results of specifically testing 
the multiclass breast, cervical, ovarian; abbreviated as BCO) based on model’s Endometrial scores. The resulting confusion matrix on applying a 
threshold shows good accuracy, sensitivity, and specificity. Panel (B) shows results of specifically testing the multiclass trained model for separation 
of breast cancer samples from the other cancers based on model’s Breast scores. The resulting confusion matrix on applying a threshold shows good 
accuracy, sensitivity, and specificity. Panel (C) the results of specifically testing the multiclass trained model for separation of cervical cancer samples 
from the other cancers based on model’s Cervical scores. The resulting confusion matrix on applying a threshold shows good accuracy, sensitivity, and 
specificity. Panel (D) shows results of specifically testing the multiclass trained model for separation of ovarian cancer samples from the other cancers. 



7

Ramamoorthy S,  et al. 

Bio Med, Vol. 15 Iss. 9 No: 1000610

Table 3: Identification of the cancer type (TOO).

Cancer type #Samples correctly identified Accuracy (%)

Breast cancer 107/107 100

Endometrial cancer 272/299 90.97

Cervical cancer 184/192 95.8

Ovarian cancer 190/199 95.5

DISCUSSION AND CONCLUSION

While there is an increased emphasis on detection of cancers at an 
early stage, recent years are also witnessing a paradigm shift towards 
multiple cancer detection with a single blood draw. These latter efforts 
have largely focused on analysis of circulating tumour cell-free DNA 
(ctDNA) by using genomic technologies and machine learning to 
not only detect multiple cancers simultaneously but also identify the 
Tissue of signal Origin (TOO) [31-35]. The promise that such Multi-Cancer 
Detection (MCD) tests hold is that they would permit detection of 
several cancers that otherwise go undetected until they reach an 
advanced stage [36]. Indeed, mathematical modelling of the potential 
public health impact of including multi-cancer detection tests to usual 
care suggested a marked positive effect with a substantial reduction in 
overall cancer mortality [37].

Despite the promise shown by MCDs based on ctDNA analysis, 
concerns have been raised that ctDNA may be a less than satisfactory 
proxy for liquid biopsies of tumour tissues for early detection because 
of limitations in both sensitivity and specificity. In this context, the low 
concentration of ctDNA and its variability based on type and status of 
the tumour also contributes as a complicating factor [40]. Furthermore,  the 
low to negligible concentration of ctDNA present in the early stages 
of cancer also limits the sensitivity that can be achieved for the stages [41,42]. 
This concern is borne out by more recent results from clinical trials 
where sensitivity of detection of early-stage cancers was indeed found 
to be low [34,35]. Given these potential limitations with ctDNA, we  preferred 
to test the utility of metabolomics for early-stage cancer detection. 
The rationale here was based on the now widely accepted notion that 
metabolites serve as proximal reporters of disease since their relative 
abundances are often directly related to pathogenic mechanisms [43,45]. 
We hypothesized that metabolomics should be an especially relevant 
technique for cancer detection since cancers have significantly altered 
metabolism [46,47]. Therefore, the spectrum of metabolites produced can 
possibly yield signatures characteristic of the presence of cancer.

As demonstrated in our previous report and the results described 
here, our expectation was indeed borne out. At least in the context of 
the four female-specific cancers, serum metabolome analysis coupled 
with AI analysis yielded a very accurate method for their simultaneous 
detection at the early stage, and subsequent of the Tissue of Origin 
(TOO) . Indeed the high sensitivity obtained for detection of Stage-I 
of all the four cancers is particularly notable and unmatched by that 
achieved through analysis of ctDNA [34,35]. We do, however, acknowledge 
that our current method only enables simultaneous detection of the 
four female-specific cancers. Nonetheless, an important highlight of 
our present study is that it validates the performance of our method in 
a clinical setting. Particularly notable here is the fact that the algorithms 
for cancer detection and TOO prediction, which were trained primarily 
on samples from Caucasian patients, retained their accuracy with 
samples from Indian women patients [24]. This indicated that, at least with 
respect to the two population groups studied, variables such as ethnicity 
and race did not affect performance of either algorithm. Indeed, the 
high sensitivity and specificity of >99% obtained for detection of the 

Beta-validation of our algorithms through a blinded study 
protocol

The results obtained so far establish that the algorithms that we had 
previously developed, using data primarily generated with samples 
obtained from Caucasians [24], were equally effective for screening of 
female-specific cancers in Indian women. Indeed, the high sensitivity 
and specificity obtained, for both detection of cancer positivity as well 
as for identification of cancer type, also suggest that this approach is 
likely to be at least less sensitive to population-related differences in 
the subjects. To further verify the potential clinical utility of our test 
platform, we sought to beta-validate it by employing a blinded protocol. 
In this, coded samples we sent by the clinical team (SR, SS, SKM) to 
the team involved in sample analysis and diagnosis of the cancer state 
and type (analytics team, AG, GS, ZS, NS, KVSR). Here, all Public 
Health Information (PHI) identifiers/variable were protected from the 
latter team. Apart from sample IDs, no information on either cancer 
status or cancer type were provided.

A total of 1000 samples were provided by the clinical team, which the 
analytical team then analysed by generating the corresponding serum 
metabolome profiles, followed by sequential application of the cancer 
detection and multiclass cancer type identification algorithms. Of 
these 1000 samples, 797 were identified as cancer positive, whereas the 
remaining 203 samples were identified as cancer negative. Following 
this, the multiclass algorithm was then applied to the 797 samples 
putatively identified as cancer positive, in order to distinguish those 
samples that were patients with either endometrial, breast, cervical, or 
ovarian cancer. The cumulative results were then sent to the clinical 
team, which then broke the code and summarized their findings. These 
findings are presented in Tables 2 and 3 where Table 2 provides the 
results generated with the first algorithm for identification of cancer 
positive samples. It is evident from this table that very high detection 
accuracy was obtained, with no false positives and only 3/800 true 
positive samples being missed as false negatives [25-30]. The sensitivity 
obtained here was 99.6%, with a specificity of 100% (Table 2). Table 
3 presents the results obtained after application of the multiclass 
algorithm for distinguishing between samples from patients with either 
breast, endometrial, cervical, or ovarian cancer. Here, the algorithm 
was only applied to the 797 blinded samples that were identified as 
cancer positive in Table 2. The results in Table 3 clearly underscore the 
high degree of fidelity with which the individual cancer types could be 
distinguished. While all 107 of the breast cancer samples were correctly 
identified, the accuracy for identification of cervical and ovarian 
cancer samples  was  between  95%-96%.   Endometrial cancer 
identification was, however, somewhat lower with an accuracy of close 
to 91% (Table 3). These results, therefore, provide strong validation for 
our method, which integrates untargeted metabolome profiling with 
AI-driven data analytics, for concurrent detection of female-specific 
cancers [25-30].

Table 2: Identification of women-specific cancer patients from the blinded 
sample set.

Total #samples provided 1000

True positives identified 797

True negatives identified 200

False positives identified 0

False negatives identified 3

Sensitivity 99.6% (797/800)

Specificity 100% (200/200)
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