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Abstract

This paper employs a combination of unit root tests and fractional integration techniques using the ARFIMA(p,d,q) 
model to test rational bubbles, which implies herd behavior, in Bombay Stock Exchange (BSE). The results in the paper 
strongly support the evidence of herd behavior in the daily, weekly, and monthly price aggregates. Moreover, the paper 
also investigates the degree of conditional volatility persistence using FIGARCH(p,d,q) specification to show that the 
persistence of shocks to stock price and dividend yield volatilities is short-termed.
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1. INTRODUCTION

In the wake of economic liberalization, investors are relying more and more on capital markets, as cor-
porate restructuring (mergers, divestiture, etc.) are becoming commonplace, and strategic alliances are 
gaining popularity. In these events, a crucial issue to be addressed is: how should a company or a divi-
sion thereof be valued? In an efficient market, the present value of the expected future dividends of a 
share represents the fundamental value of the share. This is because in an efficient market stock prices 
change only in response to new information about the change in fundamentals. When investors purchase 
shares solely for their future payoff (dividends), stock prices are said to be driven mainly by fundamen-
tals. However, in a market dominated by nonfundamental speculative factors, stock price diverges from 
its fundamental value. Thus, the systematic divergence of the stock price from its fundamental value is 
an indication of a rational bubble. Blanchard and Watson (1982) refer to rational bubbles as self-fulfilling 
expectations that push stock prices toward the expected price level, which is unrelated to change in the 
fundamentals of the stock price. Bikhchandani and Sharma (2000) attribute rational bubbles to the pres-
ence of a large number of investors reacting simultaneously to new information so that an overreaction 
in aggregate is created. A number of authors (Campbell and Shiller, 1987; Diba and Grossman, 1988; Tim-
mermann, 1995; Nasseh and Strauss, 2004; Koustas and Serletis, 2005) have all investigated the presence 
of rational bubbles in a number of developed stock markets by investigating integration of stock prices and 
dividends. The main difference between this paper and the above-mentioned papers is that in this paper 
our aim to test rational bubbles in a fast-growing major emerging stock market, which is the Bombay stock 
market (BSE). Along the same lines of the research methodology of Koustas and Serletis (2005), in this 

1A version of this paper is posted as a working paper at MPRA and SSRN repositories: https://mpra.ub.uni -muenchen 
.de/18545/1/MPRA_paper_18545.pdf, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2174840
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paper, we employed the fractional integration technique, which uses the more general approach of I(d),  
where d, is not necessarily equal to 0, or 1, but can take a value of fraction, or 0 < d < 1. In doing so, we avoid 
the strong restriction produced by the I(0) and I(1) specification of classical unit root tests.

2. MODELING RATIONAL BUBBLES

In modeling rational bubbles, we adopt the same approach as in Campbell et al. (1997). As stock return at 
time t + 1 can be defined as the capital gains plus expected dividend yield, then
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where rt+1 is the return of a stock held at the end of the period t + 1, Pt and Dt, respectively, are the stock price 
and the dividends payable at the end of period t. Taking the mathematical expectation in Equation (1), based 
on the available information at time t, and rearranging terms, we get
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To solve for a unique solution, we need to assume that in the long term, the last term in Equation (3) dimin-
ishes to zero so that2
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Given that the asymptotic assumption stated in Equation (4) is holding, from (3) the fundamental value of 
the stock is determined as
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When the asymptotic assumption (4) fails to hold, Equation (3) can be restated as follows:

Pt = Ft +Bt

where,

Bt = E
Pt+k

1+ rt+k
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for k = 1,2....
 

(6)

2This is always true for any positive end-period discount rate (i.e., rt+n > 0).
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The term Bt in Equation (6) is called a rational bubble, because it is consistent with rational expectation and 
the time path of the expected return. The time-varying expected stock return component in Equation (6) ren-
ders Equation (6) into a nonlinear form. To simplify Equation (6) further, suggest a log-linear approximation 
to Equation (1) so that

ˆ log( ) log( )
ˆ ˆ log(1 exp( ˆ ˆ ))

1 1 1

1 1 1

r P d P
P P d P

t t t t

t t t t

= + −
= − + + −

+ = +

+ + +  (7)

where

ˆ log(1 )
ˆ log( )
ˆ log( )

1 1r r
P P
d d

t t

t t

t t

= +
=
=

+ +

 

Equation (7) is a nonlinear function of the log dividend–price ratio. First-order Taylor expansion around the 
mean reduces Equation (7) to the log-linear approximation:

α λ λˆ ˆ (1 ) ˆ ˆ
1 1 1r P d Pt t t t≈ + + − −+ + +  (8)

where λ and α are parameters. Equation (8) is a linear difference equation for the log stock price. Solving 
forward and imposing the no bubble assumption λlim( ) 0i pi t i→ ∞ =+ , we obtain
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In a final step, take the mathematical expectation of (9), based on the available information at time t, and 
solve for the log dividend–price ratio, so that
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Equation (10) implies that when the dividend growth factor, Δdt,and the log of stock returns are stationary 
stochastic processes, the log dividend yield is stationary, and thus no rational bubble is holding. As a result, 
to test for rational bubbles in dividend yield, we either test for unit roots in the variables on the right-hand 
side of Equation (10), or alternatively for a unit root in the left-hand-side variable, which is the log dividend 
yield.

In this paper, we adopt the fractional integration approach to test for stationarity of dividend yield, 
besides the classical unit root tests.

In the following section, we discuss the ARFIMA(p,d,q) process ( 0, 1,....)y tt = ± .

2.1. The ARFIMA Process
The ARFIMA(p,d,q) model can be stated as follows:
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and L is the lag operator, d is the fractional differencing parameter, all roots of φ(L) and θ(L)are assumed to 
lie outside the unit circle, and εt is white noise.

GARCH(p,q) models attempt to account for volatility persistence but have the features that persistence 
decays relatively fast. However, in some cases, volatility shows very long temporal dependence, that is, the 
autocorrelation function decays very slowly. This motivates consideration of fractionally integrated gener-
alized autoregressive conditional heteroskedasticity (FIGARCH) process (Baillie, 1996) defined as follows3:

φ ε β( )(1 ) {1 ( )}2L L w L vd
t t− = + −  (12)

where ϕ(L) and β(L) are, respectively, the AR(p) and MA(q) vector coefficients and ε σ2 2vt t t= − ,
Following Baillie (1996), Bollerslev and Mikkelsen (1996), and Granger and Ding (1996), the parameters 

in the ARFIMA(p,d,q) and FIGARCH(p,d,q) models in (11) and (12) were estimated using quasi-maximum like-
lihood (QMLE) method. In the ARFIMA models, the short-run behavior of the data series is represented by 
the conventional Auto-Regressive Moving Average (ARMA) parameters, while the long-run dependence can 
be captured by the fractional differencing parameter, d. A similar result may also hold true when modeling 
conditional variance, as in Equation (12). Although for the covariance stationary GARCH(p,q) model a shock 
to the forecast of the future conditional variance dies out at an exponential rate, for the FIGARCH(p,d,q) 
model the effect of a shock to the future conditional variance decays at low hyperbolic rate. As a result, the 
fractional differencing parameter, d, in Equations (11) and (12), can be regarded the decay rate of a shock to 
the conditional variance (Bollerslev and Mikkelsen, 1996).

In general, allowing for values of d in the range between zero and unity (or, 0 < d < 1) adds flexibility 
that plays an important role in modeling long-run dependence in time series.4

3. TESTING FOR FRACTIONAL INTEGRATION

For computational simplification, the polynomial in (11) and (12) can be presented in a form of binomial 
expansion as follows:
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for all real d. If d = 0, the series is covariance stationary and possesses short memory process, whereas in 
the case of d = 1 the series is nonstationary. However, in the case of 0 < d < 0.5, the series even though cova-
riance stationary, its auto-covariance decays much more slowly than the ARMA process. If d is 0.5 < d < 1 
the series is no longer covariance stationary, but still is mean reverting with the effect of a shock persisting 
for a long period of time, and in that case the process is said to have a long memory. More specifically, 
given a discrete time series, yt, with autocorrelation function, ρj, at lag j, Mcleod and Hipel (1978) define long 
memory as a process

ρ j
j=−n

n

∑ as n→∞
 (13)

characterized as nonfinite. In the nonstationary and in the long memory process, a shock et at time t contin-
ues to influence future yt+k for a longer horizon, k, than would be the case for the standard stationary ARMA 

3For the FIGARCH(p,d,q) model to be well defined, and the conditional variance positive for all t, all the coefficients in 
the ARCH representation must be non-negative.
4A detailed discussion about the importance of allowing for noninteger values of integration when modeling long-run 
dependence in the conditional mean of time series data.



Management and Economics Research Journal 5

Article ID: 958657 https://doi.org/10.18639/MERJ.2020.958657

process. Although there are varieties of ways to check for the nonstationary long-memory process, in this 
paper we employed the maximum likelihood estimator.

4. RESULTS AND DISCUSSION

In this paper, we test the BSE index and its corresponding dividend yield, for the existence of rational 
bubbles or mean reversion in the log price level and dividend yield using daily, weekly, and monthly data 
during the period from September 1, 2010 to September 1, 2018. The data in this research are taken from the 
website of BSE. For the weekly data, we took the averages of the five trading days each week, whereas for 
the monthly data the average of all trading days in each month is taken as the monthly index. An advantage 
of taking the average of trading days each week and each month is that it neutralizes the effect of the end of 
the week and the end of the month on the stock price data. To test for stationarity, we employed traditional 
Auto Correlation Function (ACF) plotting and unit root tests, the Augmented Dickey and Fuller (1981) or ADF, 
Phillips and Perron (1988) or PP, and Kwiatkowski et al. (1992) or KPSS tests, with trend and with no trend 
in the variables. As indicated in Table 1, and in the ACF plots (figures 1 and 2) the results of the three tests 
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cannot reject the unit root in any of the cases, thereby suggesting the existence of a rational bubble in the 
BSE price data. However, it is well documented in the literature that the ADF and PP unit root tests, in partic-
ular, suffer from very low power against stationary alternatives if the roots are close to the unit root. Diebold 
and Rudebusch (1991) indicate that ADF and PP unit root tests have very low power against the fractionally 
integrated alternative. To account for such a shortfall, we investigate the order of integration of the two data 
sets using the fractionally integrated ARMA process.

Table 1 reports the unit root test results, using Augmented Dickey and Fuller (1981), Phillips and Perron 
(1988), and Kwiatkowski et al., 1992 (KPSS) tests.5 All the three test results, under a 5% significance level, 
reject the stationarity condition in favor of the unit root hypothesis, for the daily, weekly, and the monthly 
log price and the log dividend yield. As indicated earlier, the evidence of unit root (nonstationarity) in the 
log dividend yield is consistent with the existence of rational bubbles, which imply a persistent deviation 
of stock prices from its fundamental driver, which is the dividend per share value. As the ADF, PP, and KPSS 
unit root test results presented in Table 1 reflect only the integer order of integration, the ARFIMA(p,d,q) pro-
cess can verify the order of integration of the fractional exponent. Thus, the unit root tests reported in Table 
1 impose the restriction that d = 1, while the KPSS test imposes the restriction of the null hypothesis that 
d = 0, whereas the ARFIMA process reported in Table 2 tests the order of integration under the null hypoth-
esis that d < 1. The results reported in Table 2 reject the fractional integration of the log dividend yield and 
the log price level, for daily, weekly, and monthly time series data. The estimated values of d are significantly 
greater than the stationary range of (−0.5 < d < 0.5). The results of unit root tests and fractional integration 
test in Tables 1 and 2 both suggest rejection of mean reversion hypothesis in the log prices and log dividend 
yield, in favor of the unit root hypothesis, which imply rational bubbles behavior in BSE.

The effect of aggregation bias in the data is realized by a number of authors in the literature (Ng and  
Perron, 1995; Taylor, 2001) and pointed out that the use of low-frequency data increase bias toward random 
walk process. For instance, Taylor (2001) concludes that if stock price adjustment toward its fundamental 
value (dividends) is of the order of days or weeks, then using monthly data could bias the results toward 
finding unit roots in the data, thereby concluding the existence of rational bubbles. To safeguard against 
these types of aggregation bias, we conducted a Monte Carlo simulation of 2000 replication assuming 

5KPSS test initially was developed to test the null hypothesis I(0), against the alternative I(1). However, Lee and Schmidt 
(1996) indicated (Theorem 3, page 291) that the KPSS test is consistent with the null hypothesis of short memory, against 
stationary long memory alternatives, such as I(d) process for ( 0.5, 0.5), 0d d∈ − ≠ . Thus, KPSS test can also be used to 
distinguish short-memory and long-memory stationary processes. 

Table 1. Unit Root Tests.

Dickey–Fuller Phillips–Perron KPSS

(i) (ii) (i) (ii) ηu ηr

Log price:
Daily data

Weekly data
Monthly data

2.90
1.89
3.19

3.26
3.45
4.09

3.10
3.89
4.01

4.12
3.19
4.12

3.89
9.15
1.29

13.31
14.40
8.09

Log dividends yield:
Daily data

Weekly data
Monthly data

0.89
1.75
3.48

2.78
1.90
3.61

2.41
1.31
3.82

2.24
2.11
3.56

25.23
15.09
1.10

2.51
1.67
2.10

Critical values (5%)
Significance level

4.59 4.68 4.59 4.68 0.463 0.146

Note: (i) with drift only, (ii) with drift and trend. ηu and ηr statistics are, respectively, level stationarity and trend station-
arity statistics. The reported KPSS statistics are based on 20 lags for daily, 8 lags for weekly, and 2 lags for monthly 
data. The optimal lag length order in ADF is selected by Akaike Information Criteria (AIC).
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Table 2. Estimation Results of ARFIMA(1,d,1).

Log dividends yield Log price level

Parameters Daily Weekly Monthly Daily Weekly Monthly

d̂
(std.error)

0.82*
( 0.15E-3)

0.86*
(0.001)

0.79*
(0.002)

0.89*
(0.16E-3)

0.87*
(0.15E-3)

0.91*
(0.002)

φ̂
(std.error)

0.001
(0.001)

0.19*
(0.001)

0.61*
(0.002)

0.046*
(0.003)

0.36*
(0.16E-2)

0.43*
(0.071)

θ̂
(std.error)

−0.12E-5
(0.47E-6)

−0.11E-7*
(0.11E-6)

0.12E-5*
(0.23E-7)

0.01E-7
(0.19E-6)

0.56E-8
(0.18E-7)

0.1E-7
(0.12E-5)

c
(std.error)

0.011*
(0.55E-4)

0.0056*
(0.0005)

0.018*
(0.0021)

0.0078*
(0.0001)

0.021*
(0.15E-2)

0.10*
(0.035)

Log-likelihood
function

5,432 2,130 117 1,521 1,130 320

Table 3. Monte Carlo Simulation.

Log dividend yield Log price

Daily

d
–

ESE
STDSE

0.82
0.01

0.005

0.89
0.001

0.0003

Weekly

d
–

ESE
STDSE

0.86
0.10

0.002

0.90
0.01

0.007

Monthly

d
–

ESE
STDSE

0.74
0.17
0.06

0.88
0.11
0.09

Note: d
–
 is the average parameter estimate. ESE is the average standard error, STDSE is 

the standard deviation of the standard error.
We used the Data Generating Process (DGP) process of ARFIMA(0,d,1): 
(1 – L)d (yt – u) = et where et = θet–1 + εt for εt is white noise

random walk Data Generating Process. The simulation results in Table 3 show the fractional difference par-
ameter, d, is unbiased and therefore complement the significance of the results in Table 3, that is the unit 
root hypothesis of both log dividend yield and the log price level.

Table 4 presents the results of the volatility persistence of the FIGARCH model. The sign and size of 
the d̂  parameter in the FIGARCH model indicate that there is no evidence of long-memory behavior in the 
conditional variance of the dividend yield and the stock price.

5. CONCLUSION

This paper has employed a combination of unit root tests and fractional integration techniques to test the 
order of integration of log dividend yield and log price level in BSE. The paper also investigates the degree 
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of conditional volatility persistence using the FIGARCH(p,d,q) model for the log dividend and the log price 
data on daily, weekly, and monthly series, for the period from September 1, 2010 to September 1, 2018. The 
results in the paper strongly support the existence of rational bubbles in the daily, weekly, and monthly 
aggregates. The Monte Carlo simulation results fully support our estimation results and show no aggrega-
tion bias effect on the results. The evidence of rational bubbles in BSE reflects the consistent divergence of 
stock prices from dividends. The presence of rational bubbles in BSE can be viewed as an indication of herd 
behavior in the market, as a large number of investors reacting simultaneously to new information create 
overreaction in aggregate.
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